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This paper presents an extension of a numerical algorithm for network flow analysis code

to perform multi-dimensional flow calculation. The one dimensional momentum equation

in network flow analysis code has been extended to include momentum transport due to

shear stress and transverse component of velocity. Both laminar and turbulent flows are

considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three

classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular

cavity) are presented as benchmark for the verification of the numerical scheme.

1.0 Introduction

Traditionally, fluid network codes have been used for system level analyses, whereas

Navier-Stokes(NS) codes have been used for component level analyses. Until recently,

most attempts to merge the two methodologies have come from the NS side (i.e. using a

NS code to perform a system level analysis). This approach brings the enormous

overhead associated with such a code. The current approach, on the other hand, begins

from the fluid network side. The system level code utilized in the current study is the

Generalized Fluid System Simulation Program (GFSSP) [1 ].

The Generalized Fluid System Simulation Program was developed for the purpose of

calculating pressure and flow distribution in a complex flow network associated with

secondary flow in a liquid rocket engine turbopump. The code was developed to be a

general purpose flow network solver so that generic networks could be modeled. A given

fluid system is discretized into the nodes and branches. This practice is conceptually

similar to the "staggered grid" practice of SIMPLE algoritm of Patankar & Spalding[2].

GFSSP employs a finite volume formulation of mass, momentum, and energy

conservation equations in conjunction with the thermodynamic equations of state for real

fluids. Mass, energy and specie conservation equations are solved at the nodes; the

momentum conservation equations are solved in the branches. The system of equations

describing the fluid network is solved by a hybrid numerical method that is a combination

of the Newton-Raphson and successive substitution methods. Eighteen different

resistance/source options are provided for modeling momentum sources or sinks in the

branches. Two thermodynamic property programs, GASP-WASP[3,4] and GASPAK[5]



areintegratedwith the code to provide thermodynamic and thermophysical properties of

real fluid. GFSSP's system level capability has been extensively verified by comparing

with test data [6-10].

2.0 Unstructured Finite Volume Grid

The unstructured finite volume grid network for GFSSP is shown in Figure 1, which

shows connectivity of five nodes with four branches. In this figure node-i is connected

with four neighboring nodes (j = 1 to 4). In structured coordinate systems the number of

neighboring nodes are restricted to 2, 4 and 6 for one, two and three dimensional systems

respectively. On the other hand for an unstructured system, there is no such restriction on

the number of neighboring nodes. The index k represents fluid species.
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Figure 1: Schematic of Nodes and Branches for an Unstructured Finite Volume Grid

3.0 Conservation Equations

3.1 Mass Conservation Equation

The mass conservation equation for the ith node can be represented by:

n
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Equation 1 implies that the net mass flow from a given node must equate to zero. In other

words, the total mass flow rate into a node is equal to the total mass flow rate out of the

node.



3.2Momentum Conservation Equation

The one dimensional form of momentum equation for every branch takes the following
form:
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Equation 2 represents the balance of fluid forces acting on a given branch. Inertia,

pressure, gravity, friction and centrifugal forces are considered in the conservation

equation. In addition to five forces, a source term S has been provided in the equation to

input pump characteristics or to input power to pump in a given branch. If a pump is

located in a given branch, all other forces except pressure are set to zero. The source

term S is set to zero in all other cases. Figure 2 shows the schematic of a branch control
volume.
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Figure 2: Schematic of a Branch Control Volume Showing the Gravity and Rotation

Multi-dimensional conservation equations must account for the transport of mass,

momentum and energy into and out of the control volume from all directions in space.

Mass conservation equations (Equation 1) can account for such transport because each

internal node can be connected with multiple neighboring nodes located in space in any

arbitrary location (Figure 1). On the other hand, the momentum conservation equation

(Equation 2) is one dimensional. Multi-dimensional momentum transport can be

accounted for by incorporating two additional terms in the momentum equation. These

terms include: a) momentum transport due to shear, and b) momentum transport due to

the transverse component of velocity.



Thesetwo terms can be identified in the two-dimensionalsteadystateNavier-Stokes
equationwhichcanbeexpressedas:
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The first term on the left hand side of Equation 3 corresponds to the current inertia term

described in Equation 2. The second term on the left hand side of Equation 3

corresponds to the transverse momentum exchange. The first term on the right hand side

corresponds to the pressure term in Equation 2. The second term on the right hand side

of Equation 3 corresponds to the gravity term. The third term on the right hand side of

the equation is negligible (based on an order of magnitude argument). The fourth term on

the right hand side represents momentum transport due to shear. The next two sub-

sections describe the implementation of shear and transverse momentum transport into

the momentum equation of GFSSP. A more detailed description of the implementation

of these terms for laminar flow is detailed by Schallhorn [11].

3.3 Momentum Transport Due to Shear

3.3.1 Laminar Flow

Begin by examining the shear term (fourth term) of the Navier-Stokes Equation in more

detail. First, consider the shear as a force instead of a force per unit volume by

multiplying the volume by the shear term.
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Figure 3 represents a set of nodes and branches for which shear forces are exchanged.

Let branch 12 represent the branch for which the shear force is to be calculated.

Branches NI2 and S12 represent the parallel branches which will be used to calculate the
shear force on branch 12. Let YS be the distance between branches 12 and S12, and let

YN be the distance between branches 12 and N12. Let AS be the shearing area between

branches 12 and S12, while AN is the shearing area between branches 12 and N12.
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Figure 3: Branch and Node Schematic for Shear Exchange

A differencing scheme that can account for non-orthogonality in node structure was used.

Equation 5 represents the shear term for branch 12. The angle 0 represents the angle that

adjacent branches make with respect to the referenced branch.

0UA [( UN_2COS0N_2"U_2 AN)+(g u12 -usl2 COS0m AS)]IX_ Sramh 12shem" = IX YN YS
(5)

Equation 5 can be generalized to n-number of parallel branches at any position around

branch 12 as shown in Equation 6.
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Where the summation subscript i represents the i th parallel branch to branch 12.

Next, the shear interaction with a neighboring parallel wall should be addressed.

Suppose that adjacent to branch 12 is a wall that is approximately parallel to the branch.

The angle 0wall represents the angle between branch 12 and the wall. The wall has a

velocity Vsolid. The distance between the centerline of branch 12 and the wall is ywall and

the shear area is Awau. The expression for the shear effect of the wall on branch 12 is

given in Equation 7.
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If there were multiple walls adjacent to branch 12, then Equation 7 could be generalized

into Equation 8.
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Finally, combining the adjacent branch and the wall shear equations into one generalized

equation for the im branch for which shear is to be calculated. Equation 9 represents the

actual laminar shear formulation incorporated into GFSSP, where i is the current branch,

npi is the number of parallel branches to branch i, and nsi is the number of parallel solid

walls to branch i.
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3.3.2 Turbulent Flow

To model shear stress in a turbulent flow, a turbulence model must be employed.

Separate methods must be used to model the interaction between adjacent branches and

between branches and adjacent walls. The following two sections provide the details for

the modeling of these interactions.

3.3.2.1 Branch-Branch Interaction

Turbulent shear stress interaction between a branch and one of its neighboring branches

is modeled using a modified form of the Mixing Length algebraic model proposed by

Prandtl (see reference 5 for a description of Prandtl Mixing Length model). Referring to

Figure 3 again, shear interaction between branch 12 and branch N12 is determined by

their relative mean velocities, the shear area (AN) and the distance between the two

branches (YN). In the original mixing length turbulence model proposed by Prandtl,

viscosity (beginning with Equation 3) is replaced by an effective viscosity. This effective

viscosity is defined as the sum of the viscosity and a "turbulent" viscosity:

_effective = _[ + _turbulent " (10)

The turbulent viscosity, proposed by Prandtl, is defined by Equation 11, below.

where, p = local density of the fluid,

K = Prandtl's mixing length constant (0.4),

y = distance from the wail,

u = local fluid velocity parallel to the wall.

(11)

Prandtl's formulation requires knowledge of local positioning with respect to a wall(s);

however, GFSSP's formulation (outlined earlier) is fully unstructured. In order to

implement the above approach into GFSSP, either additional information is required in

the input file, or a modification to the definition of "y" in Equation 11 is needed. Based

upon a desire to easily allow for an individual model to provide results for both laminar

and turbulent approaches with minimal input change by the user, the latter approach of

6



modifying thedefinition of "y" was chosen. The new definition of "y" for Equation 11 is
the distance between the branches, which is a required input for the laminar approach

already. Therefore, for turbulent flow, Equation 4, 5, and 6 become Equations 12, 13,
and 14.
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Equation 14 representsthe actualbranch-branch turbulentshear formulation put into

GFSSP.

3.3.2.2 Branch -Wall Interaction

Turbulent shear stress interaction between a solid (wall) and an adjacent branch is

modeled using the log law of the wall [12]. The log law of the wall utilizes a

characteristic turbulence distance from the wall (y+) and a characteristic velocity (u+). y+

is a function of wall shear stress, and u + is a function of y+ and wall shear stress; therefore

an iterative scheme is required to calculate wall shear stress. Equations 15, 16, and 17

are the three equations that are iterated upon until a converged value for wall shear stress

is achieved.

I

Ix

where, p = local fluid density

Ix = local fluid viscosity

y = local distance from wall

(15)



y÷ if y+ <5.0u+ = -3.05+ 5.0(log(y÷)) if 5.0< y+ <30.0 (16)

[5.5 + 2.5(log(y÷)) if y+ > 30.0

where, u = local velocity parallel to the wall

(17)

In order to initiate the iterative process, a seed value of the wall shear stress must be

provided. The seed value of wall shear stress utilized is given by Equation 18:

_l,U
"ci,i_,,g_s' = -- (18)

Y

Equations 15-18 represent the actual branch-wall turbulent shear stress formulation

incorporated into GFSSP.

3.4 Transverse Momentum Transport

The transverse momentum component of Equation 3 can be expressed in terms of a force

per unit volume.

_pvu V = (ovA U)(A x)(A y)(A z) = (A x)(A z)(pvAu) = riat_,Au (19)
ay (A y)

Figure 4 represents a set of nodes and branches for which transverse momentum

exchange will take place. Let the branch 12 represent the current branch which will

receive transverse momentum from the surrounding branches. Branch S12 represents an

adjacent parallel branch, while branches S1
branches.

E

and $2 represent the adjacent normal

j-

j-

Figure 4: Branch and Node Schematic for Transverse Momentum Exchange



Now, examine the formulation for calculating the transverse momentum term for branch

12. First, calculate the average mass flow rate for the adjacent normal branches:

1

ITIS_- "_( lil$1 + I:[IS2)
(20)

Examining Figure 4, a positive transverse mass flow rate is defined as flow into the nodes

corresponding to the branch in question. Based on this definition of transverse mass flow

rate, calculate the transverse momentum term:

()OVU V] -'_ (Ii'IsU 12 -- ii'IsUsI 2 )---- Ii'l s (Hi2 -- US, 2 )

Oy I12

(21)

The parallel branch (S12) will contribute to the transverse momentum term of branch 12

when ria,2>_0 (since a positive transverse flow rate begins at S12 and ends at 12), and

should have a negligible contribution when fi_,2< 0 (i.e. transverse flow rate begins at 12

and ends at S12). Equation 22, is the upwinding representation of the transverse

momentum term for branch 12.

_pvU/)yV ,2 - u'2 (maxll-rns,ql)-us,2(maxl[0,msll) (22)

Equation 22 can be generalized for m-parallel branches around branch i, each with an

angle 0ij with respect to branch i, and nii corresponding transverse connecting branches,

each transverse branch with an angle of 0ijk with respect to branch i. Equation 23

represents this generalized version of Equation 22.

I [(t (l a{' }1)]/)pVUv = u_ max _I--ria_ikcos0_ikl,0-(u_icos0_i max,
ay , k"t% J m) _-_jm,jkcos0_j_ (23)

Equation 23 represents the actual transverse momentum formulation put into GFSSP,
where i is the current branch for which transverse momentum is being calculated, mi is

the number of parallel branches which will be used to calculate transverse momentum,

and nij is the number of connecting transverse branches between the current branch i, and

the jth parallel branch.

4.0 Verification Results

In order to verify proper implementation of the shear and transverse momentum

components into GFSSP, three models were identified and developed. Two verification
models were benchmarked for both laminar and turbulent flow. These two models are:

two dimensional Poiseuille flow and two dimensional Couette flow. The third model was

benchmarked with the laminar flow solution only. This third model is the two



dimensionalsheardriven flow in a squarecavity. The following sectionsdescribethe
modelsandpresentstheresults.

4.1 Poiseuille Flow Model

Consider the flow between two fixed flat plates shown in Figure 5. The flow is pressure

driven and assumed to be fully developed. The analytical solution for this situation can

easily be derived for laminar flow. Figure 6 shows an approximate velocity profile for
the laminar situation.

A simple 3 node, 10 branch model (two sets of 5 parallel branches) was constructed to

model the physical situation described above. The model is shown schematically in

Figure 7.

U top surface = 0
tlbottom surface _ 0

Pup_t_ = 20 psi
Pdownstream = 10 psi

Figure 5: Poiseuille Flow Physical Situation

Figure 6: Poiseuille Flow Velocity Profile

Top Wall Top Wall

Bottom Wall Bottom Wall

Figure 7: GFSSP Poiseuille Flow Model
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The GFSSP'sflow througha restriction resistanceoption wasused in the initial flow
field calculation (for the first Newton-Raphsoniteration, after which the shear will
replacethefriction factorcalculation)for eachof thebranches.Thebottomandtopwalls
arefixed.

Figure 8 shows a comparisonbetweenthe velocity profiles for the known solutions
(analyticalfor laminarandexperimentalfor turbulent)andtheGFSSP3 node,10branch
(5 parallelbranch)model. As canbeseenin Figure 8, theresultsof this crudeGFSSP
modelcomparevaryfavorablywith theanalyticalsolution.
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Figure 8: Poiseuille Flow Velocity Distribution

4.2 Couette Flow

Consider the flow between two fixed flat plates shown in Figure 9. The flow is shear

driven and assumed to be fully developed. The solution to the laminar case is a linear

velocity profile, illustrated in Figure 10.

Ipupsuv.am = 10 psi

= 100
U top surface

Ubouom surface = 0 Pao.mt_=_ = 10 psi
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Figure 9: Couette Flow Physical Situation

Figure 10: Laminar Couette Flow Velocity Profile

A simple 3 node, 10 branch model (two sets of 5 parallel branches) was constructed to

model the physical situation. The model is shown schematically in Figure 11.

Top Wall Top Wall

Bottom Wall Bottom Wall

Figure 11" GFSSP Couette Flow Model

As with the Poiseuiile flow case, resistance option -02 was used in the initial flow field

calculation (for the first Newton-Raphson iteration, after which the shear will replace the

friction factor calculation) for each of the branches. The bottom walls are fixed, and the

top walls are moving at a known velocity.

Figure 12 shows the comparison between the velocity profiles for the known solutions

(analytical for the laminar case, experimental results for the turbulent case) and the

GFSSP 3 node, 10 branch (5 parallel branch) model. As can be seen in Figure 12, the

results of this crude GFSSP model compare nearly identically with the analytical

solution.
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Figure 12: Couette Flow Velocity Distribution

4.3 Shear Driven Flow in a Square Cavity

Consider a square cavity as shown in Figure 13. The flow is induced by shear interaction

at the top wall. The bottom and side walls are fixed. The top wall is moving to the right

at constant speed. The corresponding Reynolds number for this situation is Re = 100.

4.3.1 Benchmark Numerical Solution

Due to the non-linearity of the governing differential equations, an analytical solution of

this situation is not available. Instead of an analytical solution, a well known numerical

solution by Odus Burggraf [13] was used as the benchmark. Burggraf used a 51x51 grid

in his model of the square cavity.

4.3.2 GFSSP Driven Cavity Model

The GFSSP model of the driven cavity consists of 49 nodes (48 of which are internal)

and 84 branches.
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Figure 13: Flow in a Shear Driven Square Cavity

For numerical stability, one node (Node 1) was assigned to be a boundary node with an

arbitrary pressure. A unit depth was assumed for the required areas. The model is shown

schematically in Figure 14. As in the previous cases, GFSSP's flow through a restriction

resistance Option was used in the initial flow field calculation for all of the branches.

The bottom and side walls are fixed. The top walls are moving to the right at known

velocity. All parallel angles are 0 °, and all transverse angles are 90 °.
Tee Wal Tap Wd T_ wd T_P Wan Top wd Top Wall

_wd Wanom wd _wd Imaakn Wd boNnu Wd I_u_l I_1

Figure 14: GFSSP Flow in a Shear Driven Square Cavity Model
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4.3.3 Results

Figure 15 shows a comparison between the benchmark numerical solution and GFSSP

7x7 node model velocity profiles along a vertical plane at the horizontal midpoint. As

can be seen in Figure 15, the results of this crude GFSSP model compare very favorably

with the benchmark numerical solution of Burggraf [13].

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Dlme nslonless Velocity

Figure 15: Shear Driven Square Cavity Centerline Velocity Distribution

5.0 Conclusions

This paper presents a numerical algorithm to extend a system level flow network code

that was designed to solve one dimensional momentum equation to perform multi-

dimensional flow calculation. The algorithm uses an identical mathematical framework

for both system and component level analysis. The multi-dimensional features were

incorporated by including additional momentum sources due to shear stress and transport

of momentum due to transverse component of velocity. The simplicity and ease of the

formulation can largely be attributed to the use of unstructured co-ordinate system.

Excellent agreement with analytical solution was obtained for laminar flow in three

benchmark problems: Poiseuille Flow, Couette flow and shear driven flow in a square

cavity. Turbulence is modeled by an effective viscosity which is calculated from

Prandtle's mixing length theory. Numerical predictions compared well with turbulent

Couette flow data.
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